类型一:邻接表
题目一:员工的重要性
题目描述
给定一个保存员工信息的数据结构,它包含了员工唯一的id,重要度 和 直系下属的id。
比如,员工1是员工2的领导,员工2是员工3的领导。他们相应的重要度为15, 10, 5。那么员工1的数据结构是[1, 15, [2]],员工2的数据结构是[2, 10, [3]],员工3的数据结构是[3, 5, []]。注意虽然员工3也是员工1的一个下属,但是由于并不是直系下属,因此没有体现在员工1的数据结构中。
现在输入一个公司的所有员工信息,以及单个员工id,返回这个员工和他所有下属的重要度之和。
示例 1:
1 | 输入: [[1, 5, [2, 3]], [2, 3, []], [3, 3, []]], 1 |
注意:
- 一个员工最多有一个直系领导,但是可以有多个直系下属
- 员工数量不超过2000。
思路:DFS
【注意点:应使用局部变量(weight)记录结果,不能使用全局变量】
代码:
1 | """ |
题目二:钥匙和房间
有 N
个房间,开始时你位于 0
号房间。每个房间有不同的号码:0,1,2,...,N-1
,并且房间里可能有一些钥匙能使你进入下一个房间。
在形式上,对于每个房间 i
都有一个钥匙列表 rooms[i]
,每个钥匙 rooms[i][j]
由 [0,1,...,N-1]
中的一个整数表示,其中 N = rooms.length
。 钥匙 rooms[i][j] = v
可以打开编号为 v
的房间。
最初,除 0
号房间外的其余所有房间都被锁住。
你可以自由地在房间之间来回走动。
如果能进入每个房间返回 true
,否则返回 false
。
示例 1:
1 | 输入: [[1],[2],[3],[]] |
示例 2:
1 | 输入:[[1,3],[3,0,1],[2],[0]] |
提示:
1 <= rooms.length <= 1000
0 <= rooms[i].length <= 1000
- 所有房间中的钥匙数量总计不超过
3000
。
思路:DFS
每个房间找钥匙,找到则到下一个钥匙对应的房间DFS。采用一个visited列表存储是否到达过这个房间,最后如果所有房间都达到过则返回True。
代码
1 | def canVisitAllRooms(rooms): |
类型二:DAG拓扑排序
题目一:课程安排207
题目二:课程安排210
现在你总共有 n 门课需要选,记为 0
到 n-1
。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示他们: [0,1]
给定课程总量以及它们的先决条件,返回你为了学完所有课程所安排的学习顺序。
可能会有多个正确的顺序,你只要返回一种就可以了。如果不可能完成所有课程,返回一个空数组。
示例 1:
1 | 输入: 2, [[1,0]] |
示例 2:
1 | 输入: 4, [[1,0],[2,0],[3,1],[3,2]] |
说明:
- 输入的先决条件是由边缘列表表示的图形,而不是邻接矩阵。详情请参见图的表示法。
- 你可以假定输入的先决条件中没有重复的边。
提示:
- 这个问题相当于查找一个循环是否存在于有向图中。如果存在循环,则不存在拓扑排序,因此不可能选取所有课程进行学习。
- 通过 DFS 进行拓扑排序 - 一个关于Coursera的精彩视频教程(21分钟),介绍拓扑排序的基本概念。
- 拓扑排序也可以通过 BFS 完成。
思路:DFS
1、建立图
2、循环n次,每次是遍历一个节点是否已经visited且合法地加入path中了,如果False不合法则直接返回【】。
3、遍历一个节点时会将其后面的所有子节点都处理掉。
代码
1 | from collections import defaultdict |